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A Mathematical Formulation of the
Equivalence Principle

KUN-MU CHEN, FELLOW, IEEE

Ab.@act —A mathematical formulation of the equivalence principle is

presented. ‘R& may lead to a better understanding and easier applications

of the principle.

I. INTRODUCTION

T HE EQUIVALENCE principle in electromagnetic

has been well known for a long time, having been

presented by Barrington [1] in a descriptive manner in his

book. Recently, this principle has found many applications

in problems involving the interaction of EM fields with

material bodies. In these applications, accurate mathemati-

cal formulations of this principle are needed. The purpose

of this paper is to present a mathematical formulation of

the equivalence principle that may lead to a better under-

standing of the principle and make its application easier.

II. MATHEMATICAL FORMULATION

Consider a problem with a geometry as depicted in Fig.

1. This geometry consists of region 2 with complex perrnit-

tivity and permeability (cz, pz), the volume V2, the bound-

ary surface S, and the electric and magnetic source cur-. .
rents ( J2, A42) within V2. Region 2 is surrounded by region

1 of infinite volume VI that h:s eJectric parameters of

(cl, PI) and source currents of (Jl, Ml) within VI.
We aim to find the EM fields in regions 1 and 2 in terms

of the given source currents and equivalent surface cur-

rents on S. In the process, we will derive a mathematical

formulation of the well-known equivalence principle.

Maxwell’s equations for regions 1 and 2 are

{

vxi?.2=-h&jtip2i’2
m V2. (2)

v x ~z = J;+ jac21?..

Let us consider region 1 first and apply the vector Green’s
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Fig, 1. Geometry of the problem: region 2 with volume Vz, boundary
surface ,s, electric parameters ((2, p,), and source currents ( J2, MZ ) is
surrounded by region 1 with infinite volume VI, electric parameters
(6,, p,), and source currents (~, Ml). (El, H,) constitute the EM field
in VI and (Ez, Hz) that in l+,

theorem to VI:

/(Q %’xv’xF- Fv’xv’x@)du’
VI

.
-J(Q “xv’x F–Fxv’x@. z (3)

SI

where Q and P are two vector functions which are contin-

uous up to their second derivatives within VI. S1 is the

total boundary surface for VI. We choose

FEE, (4)

and

@(Z’) =d+l(F’, F) =dexp(- j~llF’-Fl)~F’-Fl (5)

where

PI=JK.

In the above equations, F‘ “N an arbitrary source (integrat-

ing) point and F is a designated field (observation) point,

_l?l(F”) is the electric field at F‘ within VI, d is a constant

unit vector, and $1 is the unbounded Green’s function for
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region 1. It is noted that if 7’ is within Vl, @l will not be

continuous at 7”= F’ and it is necessary to remove this

singularly point before (3) can be applied.

When the field point F is an interior point within Vl,

such as Z in Fig. 1, @l -+ m as F’+ Z; thus we need to

exclude this point with a small sphere having a small

surface of S. as depicted in Fig. 1. Then the total bound-

ary surface SI for VI will consist of

Sl=s+sa+sm

where S@ is the infinite spherical surface enclosing the

outside of V1.

The substitution of (4) and (5) into (3), with the help of

(1) and after a lengthy manipulation [2], will lead to the

following equation:

J[ 1–japlJ~@l – ~1 X V’@l + ~V’C#I1 do’

=~+~ ,. [-j~pl(filxfil) ql+(filx~)x~’~l
am

+(i”il)v’k] ds’ (6)

where PI is the electric source c~arge associated with J; by

the continuity equation of v. J1 + jopl = O.

It can be shown that

/[ 1 ds’=4mi1(;)
so

J[l ds’=0
s.

based on the radiation condition. Thus, (6) becomes

z(;)=;Jv[-

1

jupl~~l – fil x V’$l + ~V’@l du’
1

-&~[-j@P1(filxti,j@, +( fl,xz)xv’@l

+(fil.~l)v’~l] ds’. (7)

At this point, we can define the equivalent electric and

magnetic surface currents as

J$-flx H1=-fllx H1 (8)

ii, =- fixil=filxg (9)

where 2 is the unit vector pointing outward from re@on 2

on S, and fil is the outgoing unit vecto~ of regi~n 1 on S.

Since the tangential ~ompon~nts of E and H fields are

continuous across S, J, and M. can also be expressed as

~= fixd2=i?2x172 (lo)

fii, =-hxz2=-fi2x J?2 (11)

where 2 ~ is the outgoing unit vector of region 2 on S, and

it is in the same direction as t.
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We can also drive from (1) that

(12)

if S is a smooth surface and no source current J; is

present at S. If we use (8), (12) can be rewritten as

(13)

where~, is the equivalent electric surface c~arge associated

with J, by the continuity equation of v. J, + jtip, = O.

Substituting (8), (9), and (13) into (7) leads to

The physical meaning of (14) is as follo~s: The electric

field at an interior point ~ within Vi,+ E~fi), is main-

tained by the given source gur~ents ( Jl, Ml) in VI and

equivalent surface currents (J,, M,) on the surface S while

the medium of region ~is ~eplaced by that of region 1 and

the source currents ( J2, M2) in Vz are+regoved. This is

because the parameters (C2, p2) and (J2, M2) do not ap-

pear in (14) and the unbounded Green’s function @l ap-

pears in both the volume and_,surface integrals in (14).

From the appeara~ce ~f (14), El(fi) is maintained by the

source currents ( J1, Ml) and the equivalent surface cur-

rents (J;, fl, ) located in the unbounded homogeneous
region with electric parameters c)f (cl, PI).

Next, let us consider the case when the field point F is

on the surface S, such as ~ in Fig. 1. For this case, we

need to exclude the singularly point ~ from VI with a

hemisphere which has a hemispherical surface S. as shown

in Fig. 1 before we can use (3). With this Sa, the surface

integral over S. in (6) becomes

(15)

Therefore, (6) can be rearranged to give ~1(~) as

Comparing (16) with (14), there is a factor of 2 between
them. The surface integral in (16) is a principal value

integral which excludes the contribution from the singular-

ity point.

Lastly, if the field point 7’ is located outside Vl, or inside

Vz, such as ~ in Fig. 1, @l is continuous throughout V1.
Therefore, we do not need to create a small sphere to
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exclude the field point ~ from V1. Thus, (6)

‘~+~[-jo~(filxfill+l+(filx~)xv’+l / “ \ t ‘1 ““””””’”$
cc

1+(fil.~l)v’~l ds’ for F’= ~.

‘::... 0!

(17) (v ~el ~1) J> n
1,

Since the surface integral over S~ is zero due to the ~ M,
radiation condition, (17) leads to f Ez.Iiz=O

J[ 1

$t
J,=nx H Vz(%!wl)

...””

– jqqJ~q51 – Ml X V’@l + ~V’@l dv’
,.’”’

VI M,=-nx E ,..
..,, ,..
....

--/[ 1

s ,.....
..... ....”

— ...
– .iq.q-h – M. x V’$l + ~v’+l ds’ ..... ....

s
....‘.... .....

...... .....-... ...........
for 7’= ~. (18)

““----..------ .....--”
..,..,.........----------

Sm

Now, if we try to express the e~ct~c field at Z maintained

by the given source curr<nts~ Jl, Ml) in VI and the equiva-
Fig. 2. When the source currents (~: M2 ) in V2 are removed and the

medium of region 2 is replaced with that of region 1. the source

lent surface currents (J,, M,) on S while replacing the currents (+, J41 ) in VI and the equivalent surface currents (J,, kf, ) on

medium in region 2 with that of region 1 and removing the
S will maintain the correct EM field (l?l, 271) in ~ and zero EM field

source cu~rents (Y;, f12 ) in V2, we should have an expres-
(E2=H2=O) m ~.

sion for E2( ~ ) of the following form:

1
where

J[J72(Z) ‘~ v, 1–jq.qJT4+ – $1 x V’@l + ~v’q+ dv’
pml=~V. i@l and pm, = %ti(.

1

J[ 1
(J+—

4’n s
– jq.qz+l – G. X V’+l + ~v’~l ds’ The results obtained so far are consistent with the

equivalence principle. The situation is depicted in Fig. 2.
with F’= ~. (19) We can repeat a similar derivation for region 2. Choos-

Combining (18) and (19), we have ing

i2(~)=o. (20) F(F’) =E2(7’) (24)

This is an ~nt~resting result. It means that if the source and

currents ( Jz, ikf ) in V2 are removed and the medium of

region 2 is replaced by that of region 1 (to make the whole++ ~(~’) =ti@,(F’,F) =dexp(- j&lF’-Fl)~lF’-F\ (25)
space homogeneous), then the source cur~en~ ( Yl, Ml) in

VI and the equivalent surface currents (l,, M.) on S will where fiz = u&, and substituting ~ and ~ into (3), we

maintain a zero electric field at any poi~t within region 2. have

We can derive sim~lar+results fo~ th~ H field in regions 1

and 2 in terms of (Jl, Ml) and (J,, M.):
/[ 1

– jap2~42 – M2 X V’42 + ~v’c$2 dv’
V2

R(o=; fv[
1

– jul~l+l + J~x v’q51 + ~V’O1 du’
1

1

J[ 1

=~[-j~P2(fi,Xfi,) @2+( f12XZ] Xv’@,
2

+—

4T s
– j(.txliii,+l + ~X v’$l + ~V’@I1 ds’

+( fi2. ~.jv’~2] ds’. (26)

for 7’= ~ (interior point within VI) (21)
The total boundary surface S2 for Vz is

ti,(z)=&Jv[-
1

j%~fh + J; x v’$1 + ~V’@l dv’ s2=s+sn
1

1

/[ 1

where S. is the surface of a small sphere (or hemisphere)

+—
2’rr s

– joclfl,rpl + J~x V’G1 + ~v’+l ds’ for excluding the singularity point Z It is noted that the

infinite spherical surface Sm is not needed because V2 is a

for F= ~ (surface point on S) (22) finite volume.
Following the same manipulation used for the case of

F2(~) =0 for 7= ~ (outside of VI) (23) region 1, we can obtain ~,(~ at an interior point within
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V2 as

+(i?2&)v’@2] ds’.

U~in~ the definitions of the equivalent surface currents

(J,, M.) given in (10) and (11), we can rewrite

+(- PS)V,+2 ds,

62 1

(Fisaninteriorpoint within V,). (27)

Notice that the equiv~lent surface currents w&ch ~an

maintain the correct E field inside V2 are (– J,, –M,),

which flow in opposite directions on S compared with the

case of region lL Equation (27) implies that when the

source currents ( Jl, MI) in VI are removed and the medium

of region 1 is replaced by that of region 2 (to make the

whole space homogeneous), the correct value of the electric

field at an interior point ~ inside Vz can be calculated from

the source currents ( J2, A4z) in Vz and the negative equiva-

lent surface currents (– ~, – ti.) on S.

Similarly, the electric field at a field point on S can be

expressed as

+

+

The electric

zero,

(Fisons). (28)

field at a point outside V2 can be shown to be

~1( 7) = O (F is outside V2) (29)

when it is m~int~ined by (J;, fiz) in V2 and (– J:, – fi~)

on S after ( Jl, Ml) in VI are removed and the whole space
is filled with the m~dium of region 2.

Results for the H field in region 2 are similar to those

given by (21) to (23) and are omitted here for brevity.

Fig. 3 depicts the results obtained above for region 2.

Again, these results are consistent with the equivalence

principle.

,:. ....
.\<

~ J,=nx H
/

-J, In
M,. -nx E

-M

‘.... 0 ‘

E,, H2

\ f
J, \~ M2 ;

j

s:”
v2(q, w2) ,:”

,...’
..,”....

s
...

.... ...
.... ...
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...... ....”
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Fig. 3. When the source currents (<, Ml ) in VI are removed and the
medium of region 1 is replaced wif h that of region 2, the source
currents ( J2, M2 ) in V2 and the negative equivalent surface currents
(– ~, – M, ) on S will maintain the correct EM field (E2, H2 ) in V,

and zero EM field (El = HI = O) in VI.

III. APPLICATIONS

Mathematical formulations of the equivalence principle

derived in the preceding section may have many applica-

tions. An example is given here. A finite homogeneous

body of arbitrary shape with complex permittivity and

permeability of (c, p) located in space is exposed to an

impressed EM field with an electric field @’ and a mag-

netic field ~in. We aim to determine the induced EM field

inside the body. To solve this problem, we will first derive

t~o integ~al equat@s for the+equivalent surface currents,

J,= f X H and M,= – A X E, on the b~dy surf~ce in

terms of @’ and *. After solving for J, and M., the

induced EM field inside the body can be easily calculated.

Let us use the same geometry as th# in Fig.~. The body

is represented by region 2 with Jz+ and iMz removed.

Region 1 represents free space, and J1 and Ml the source

currents for the impressed EM field.

The 1? field at a point Fon the body surface S in region

1 side is given by (16) as

The volume integral of the above equation can be easily

identified as twice the impressed electric field at the body

surface, or it is equal to 2 @( ~). Thus,

+ :v;g51] ds’. (30)
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The 1? field at the same point F’ on S but in region 2

side is given by (28) as

+ (- P,) 1—VJ+2(LT’(31)
C2

because ~ and fiz have been removed.

Since the tangential ~ompone~t of the 1? field is contin-

uous across S, or l? X El= ii X E2, we can obtain from (30)

and (31) an integral equation as

fix J[ (.@Z IJ2@2+I.L14S1)+ fl. xv’(4r2+k)
s

– p,v ‘
( )1

:+: ds’=47fi x@(F). (32)

Similarly, ~om the continuity of th~ tangenti@ compo-

nent of the H field across S, or A X HI = i X H2, we can

derive another integral equation as

– Pmsv ‘( )1
: + : ds’= 4mi? X iifi(~). (33)

These two ~tegral~quations can be numerically solved to

determine ~ and M, by using the method of moments and

vector ~asis fun~tions with triangular p~ch modeling [3].

After J, and M, are determined, the E field inside the

body can be easily computed by using (27).

As a numerical example~ the equivalent electric and

magnetic surface currents, J, and M,, induced by a plane

EM wave on the surface of a dielectric sphere have been

computed based on (32) and (33), and the results are

shown in Figs. 4 and 5. The electrical size of the sphere is

&a= 1, where & is the free-space propagation constant

and a is the radius of the sphere. The perrnittivity of the

sphere is ~z = 4E~ and the permeability is p z = PO. The

plane EM wave is incident upon the sphere from the

direction of O = n. The induced electric and magnetic

currents along a circumferential arc on @= O are plotted as

functions of O in Figs. 4 and 5. Along the arc, there are

two components of the electric surface current, J,+ and

J~@,and two components of magnetic surface current, M,@

and M,@. The values of :, are shown normalized to the

incident magnetic field H ‘n and those of M, are normal-

ized by the incident electric field E ‘n.

To verify the accuracy of the numerical results, they are

compared with the exact solutions of Mie series. The

numerical results are indicated by small triangles and the

exact solutions are plotted in solid lines in Figs. 4 and 5. It

is observed that very accurate numerical results can be

obtained using the present method, which is based on
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Fig. 4. Equivalent electric surface currents induced by a plane EM
wave on the surface of a dielectric sphere with PI a =1, c = 4C0, and
p = PO. The plane EM wave is incident upon the sphere from the
direction of O= n and the surface currents are on a circumferential arc
Of+=o.
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Fig. 5. Equivalent magnetic surface currents induced by a plane EM
wave on the surface of a dielectric sphere with /31a=1, c = 4co, and

# = PO. The plane EM wave is incident upon the sphere from the
direction of O= r and the surface currents are on a circumferential arc
Of+=o.

integral equations for the induced equivalent surface cur-
rents.
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