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A Mathematical Formulation of the
Equivalence Principle

KUN-MU CHEN, FELLOW, IEEE

Abstract — A mathematical formulation of the equivalence principle is
presented. This may lead to a better understanding and easier applications
of the principle.

I. INTRODUCTION

HE EQUIVALENCE principle in electromagnetics

has been well known for a long time, having been
presented by Harrington [1] in a descriptive manner in his
book. Recently, this principle has found many applications
in problems involving the interaction of EM fields with
material bodies. In these applications, accurate mathemati-
cal formulations of this principle are needed. The purpose
of this paper is to present a mathematical formulation of
the equivalence principle that may lead to a better under-
standing of the principle and make its application easier.

II. MATHEMATICAL FORMULATION

Consider a problem with a geometry as depicted in Fig.
1. This geometry consists of region 2 with complex permit-
tivity and permeability (e,, y,), the volume V,, the bound-
ary surface S, and the electric and magnetic source cur-
rents (J;, M;) within V. Region 2 is surrounded by region
1 of infinite volume V; that has electric parameters of
(€1, #y) and source currents of (J;, ﬁl) within V.

We aim to find the EM fields in regions 1 and 2 in terms
of the given source currents and equivalent surface cur-
rents on S. In the process, we will derive a mathematical
formulation of the well-known equivalence principle.

Maxwell’s equations for regions 1 and 2 are

V XE =~—~M,— jopu H,
SRR Y €Y
V X H =J+ jwe E|
X Ey=— M, — jou,H.
V X Ly 2 Jiﬁg > in,. 2)

V X Hy=J,+ jwe,E,

Let us consider region 1 first and apply the vector Green’s
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Fig. 1. Geometry of the problem: region 2 with volume V,, boundary
surface S, electric parameters (¢,, jt,), and source currents (J, M,) is
surrounded by region 1 with infinite volume V], electric parameters
(€, py), and source currents (J;, M;). (E;, H) constitute the EM field
in V; and (E,, H,) that in V;.

theorem to V:

fV(Q-v’xv’xﬁ—F-v’xv’xé)dv’
1
=f(§xv’xﬁ—}7xv’x§)-:1; (3)
S

where Q and P are two vector functions which are contin-
uous up to their second derivatives within V,. §,; is the
total boundary surface for ¥;. We choose

P(7) = E(7") 4)
and

O(F") = an(7'.7) =dexp (= jBfr' =P = 7] (5)
where

By = wyp€; -

In the above equations, 7’ is an arbitrary source (integrat-
ing) point and 7 is a designated field (observation) point,
E|(7’) is the electric field at 7’ within ¥, 4 is a constant
unit vector, and ¢, is the unbounded Green’s function for
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region 1. It is noted that if 7 is within ¥, §, will not be
continuous at 7’=7 and it is necessary to remove this
singularly point before (3) can be applied.

When the field point 7 is an interior point within ¥},
such as 7| in Fig. 1, ¢; > o0 as ' —7]; thus we need to
exclude this point with a small sphere having a small
surface of S, as depicted in Fig. 1. Then the total bound-
ary surface S; for V; will consist of

$i=S+S,+8,
where S is the infinite spherical surface enclosing the
outside of V.
The substitution of (4) and (5) into (3), with the help of

(1) and after a lengthy manipulation [2], will lead to the
following equation:

. ¥ v ’ pl ! !
f — jepJip — My XV ¢1+_€“V o, | dv
1

=f [_jw#1(ﬁ1XH1)¢1+(ﬁ1XEl)xv/‘h
S+5,+8,

(6)

where p, is the electric source charge associated with f; by

the continuity equation of v-J, + jwp,=0.
It can be shown that

LU 1ds=4nEy(7)

a

+ (A B )V, a5

j; [ ]ds'=0

based on the radiation condition. Thus, (6) becomes

R 1 - R
E(7R)= E/V [“ Jop iy — My X V¢ + ?V/% dv
1 1
—W_/;[_ jw#l(ﬁ1><[1_f1)¢1+(ﬁ1x ET;)XV'%
+ (A E v, ds. (7

At this point, we can define the equivalent electric and
magnetic surface currents as

—

=Ax Hy=—#A X H,

(8
(©)

where 7 is the unit vector pointing outward from region 2
on §, and #, is the outgoing unit vector of region 1 on S.

Since the tangential components of E and H fields are
continuous across S, J and M can also be expressed as

(10)
(11)

where 7, is the outgoing unit vector of region 2 on S, and
it is in the same direction as #.

s

M, =—AxE =#XE,

—

J=ﬁXH2=ﬁ2XH2

s

M,=-AXE,=—f,xE,
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We can also drive from (1) that

(12)

ﬁl-E1=;%v-[ﬁ1xﬁ1)

if § is a smooth surface and no source current J_{ is
present at S. If we use (8), (12) can be rewritten as

- o
w—elv'(vﬁ)=:—m

Ay 51 = (13)
where p, is the equivalent electric surface charge associated

with J by the continuity equation of v- J + jowp,=0.
Substltutmg (8), (9), and (13) into (7) leads to

~ { = 1 . =g -2 , pl ’
1("1) = E'/.Vl[_ JopyJipy — My XV + 'e"l“v ¢1] dv

1 . T v ’ Py ’ ’
+ Efs{_ JouJepy — My X' + ZV 4’1] ds’. (14)

The physical meaning of (14) is as follows: The electric
field at an interior point 7 within V), El(Fi) is main-
tained by the given source currents (.Il, M 1) in V] and
equivalent surface currents (J, M ) on the surface S whﬂe
the medium of region 2is replaced by that of region 1 and
the source currents (J2, M2) in ¥, are removed. This is
because the parameters (e,, t,) and (J2, Mz) do not ap-
pear in (14) and the unbounded Green’s function ¢, ap-
pears in both the volume and surface integrals in (14).
From the appearance of (14), El(rl) is maintained by the
source currents (Jl, M 1) and the equivalent surface cur-
rents (J; M) located in the unbounded homogeneous
region W1th electric parameters of (e, gt;).

Next, let us consider the case when the field point 7 is
on the surface S, such as 7 in Fig. 1. For this case, we
need to exclude the singularly point 7, from V¥, with a
hemisphere which has a hemispherical surface S, as shown
in Fig. 1 before we can use (3). With this S,, the surface
integral over S, in (6) becomes

fg [ ds'=27E,(7). (15)

a

Therefore, (6) can be rearranged to give Ei(?;) as

[" JowJip = My XV + ;—V 4’1] dv
1

n

1 -
+ EL[‘J‘*’ML

Comparing (16) with (14), there is a factor of 2 between
them. The surface integral in (16) is a principal value
integral which excludes the contribution from the singular-
ity point.

Lastly, if the field point 7 is located outside ¥}, or inside
V,, such as 7 in Fig. 1, ¢, is continuous throughout V.
Therefore, we do not need to create a small sphere to

Vi Ps ’ ’
I~ M X'+ -V ¢1] ds’. (16)
1
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exclude the field point 7 from V;. Thus, (6) becomes

f Ii'" j‘*’.“«1-ﬁ¢1 -
"

-

+(ay

- Py
M X V¢ + V¢ dvf
1

H,) ¢y + (A X E )X v,

E;)v’qull ds’ forr=F,. (17)

Since the surface integral over S, is zero due to the

radiation condition, (17) leads to

"

s 7 v I3 pl ’ !
/ [" JouJidy — My XV'¢; + G_V ‘151] dv
1
: T Vi ’ Os ’ ’
= —[g[— Jop o, — M, X V', + —(—V cj)l] ds
1

(18)
Now, if we try to express the electric field at 7; maintained
by the given source currents (J;, M;) in V; and the equiva-
lent surface currents (J,, M) on S while replacing the
medium in region 2 with that of region 1 and removing the
source currents (Jz, M2) in V,, we should have an expres-
sion for Ez(r3) of the following form:

for ¥=7,.

: ' v 7 pl ! 7
2 3 = an f[ ]wﬂ1J1¢1_M1XV¢1+_V¢1]dU
€

— — P
———/[—jwul.ls¢1—Ms><V’q>1+E—SV’q)l] ds’
1

+
da Jg
with 7=7. (19)

Combining (18) and (19), we have
E,(7) =o. (20)

This is an _interesting result. It means that if the source
currents (Jz, M ,) in V, are removed and the medium of
region 2 is replaced by that of region 1 (to make the whole
space homogeneous), then the source currents (J_l), ]\Zl) in
V, and the equivalent surface currents (J, I M ) on S will
maintain a zero electric field at any point Wlthln region 2.

We can derive similar results for the H field in regions 1
and 2 in terms of (Jl, M, 1) and (J; )

= QN 1 . =2 = pml
H\(7) = Efv [" Jwe Mg, + J; X V' + M_V'ﬁbl] av’
1 1
1 —> —
+ — — joe Mo, + I XV'¢; + V’q&l} ds’
47T S

(21)

. — g , pml , ,
Hl(r2 . f [ Jwe Mg, + J, XV, + ——,u v q&l] dv
1

4 jnd pms
+ —f[— jwe M, + J XV ¢, + —V’q&l} ds’
27 Js By

(22)
(23)

for 7= ] (interior point within V;)

for ¥=F, (surface point on )

for 7= 7, (outside of V)
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Fig. 2. When the source currents (J,, M,) in ¥, are removed and the
medium of region 2 is replaced with that of region 1. the source
currents (J;, M;) in ¥} and the equivalent surface currents (J,, M,) on
§ will maintain the correct EM field (E;, H;) in V; and zero EM field

(E,=H,=0)m V,.
where
J . J -
pm1=—V‘M1 and pmsz—v'Ms‘
) )

The results obtained so far are consistent with the
equivalence principle. The situation is depicted in Fig. 2.

We can repeat a similar derivation for region 2. Choos-
ing

P(7") = Ey(7) (24)

and

O(7") = ags(F',7) =dexp (= jB,IF = FI) '~ F| (25)

where 8, = wyp,€,, and substituting P and Q into (3), we
have

M r v ’ p2 ! '
/ [—— Jopa s, — My X V', +—V ¢2] dv
v €

—>

_f[ Jeopa(Ay X Hy) ¢, + (1, X B, ) X '8,

+(Ay Ey )V, | ds'. (26)

The total boundary surface S, for ¥V, is
S,=85+8,

where S, is the surface of a small sphere (or hemisphere)
for excluding the singularity point 7. It is noted that the
infinite spherical surface S, is not needed because V, is a
finite volume.

Followmg the same manipulation used for the case of
region 1, we can obtain Ez(F’) at an interior point within
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V, as

- 1 . = v 7 P2 ’
E (7 =71;-[V2 ~ jop,dd, — My XV bt V% dv

—7;-/5‘[_ jw!"z(ﬁz X ﬁz)¢2+(ﬁ2 X E_';)XV'%

+(ﬁ2-1~72)v’¢2] ds’.

Using the definitions of the equivalent surface currents
(J, M ) given in (10) and (11), we can rewrite

E_',z(? =EfV[_jwﬂ2£¢2"ﬁzxv'¢2+f_zvl¢2 dv
2
1 —> —
+EL{‘]‘*’M(“-L)%“(‘Ms)XV"%

+ (_eps) V,¢2:| ds’

2

(7 is an interior point within V).

(27)

Notice that the equivalent surface currents Wthh can
maintain the correct E field inside V, are (— -M )
which flow in opposite directions on S compared w1th the
case of region 1. Equation (27) implies that when the
source currents (J;, M) in V; are removed and the medium
of region 1 is replaced by that of region 2 (to make the
whole space homogeneous), the correct value of the electric
field at an interior point 7 inside ¥, can be calculated from
the source currents (J2, M2) in V2 and the negative equiva-
lent surface currents (— -M yon S

Similarly, the electric field at a field point on S can be
expressed as

= 1 . — — , Pz ,
Ey(F) = fV = Jona iy — My X 'y + =V, | dv
2 2

) . . ,
+ ﬁfs[_ Jona(=J;) by —(— M) x V9,

+ (_eps) V’(j)z] s’ i

2

(28)

The electric field at a point outside ¥, can be shown to be
Zero,

(Fison s).

E,(F) =0 (7 is outside V,) (29)

when it is maintained by (Jz, Mz) in V, and (— ~M )
on § after (J M ) in V, are removed and the Whole space
is filled with the medlum of reglon 2.

Results for the H field in region 2 are similar to those
given by (21) to (23) and are omitted here for brevity.

Fig. 3 depicts the results obtained above for region 2.
Again, these results are consistent with the equivalence
principle.
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Fig. 3. When the source currents (J;, M;) in V; are removed and the
medium of region 1 is replaced with that of region 2, the source
currents (4, M,) in ¥, and the negative equivalent surface currents
(= J,—M,) on S will maintain the correct EM field (E,, H,) in V,
and zero EM field (E, = H, = 0) in V.

III.

Mathematical formulations of the equivalence principle
derived in the preceding section may have many applica-
tions. An example is given here. A finite homogeneous
body of arbitrary shape with complex permittivity and
permeability of (e, p) located in space is exposed to an
impressed EM field with an electric field E E'n and a mag-
netic field H'™. We aim to determine the induced EM field
inside the body. To solve this problem, we will first derive
two integral equations for the equivalent surface currents,
J—nXH and M ——n><E on the body surface in
terms of E™® and H in_ After solving for J and M the
induced EM field inside the body can be eas11y calculated

Let us use the same geometry as that in Fig. 1. The body
is represented by region 2 with J2 and M2 removed.
Region 1 represents free space, and J1 and M the source
currents for the 1mpressed EM field.

The E field at a point 7 on the body surface S in region
1 side is given by (16) as

APPLICATIONS

T 1 . — > Py
El(r) = ——f ~ jouJidpy—~ M X Ve, +—V'¢, | dv
27T 14 €
1 - P,
+ = ]wp,lJ —M XV'$p+—V'¢ | ds'.
27 €

The volume integral of the above equation can be easily
identified as twice the impressed electric field at the body
surface, or it is equal to 2E" (7). Thus,

_ L1 L
FAP) =287(7)+ - [ |- jam i~ ¥, x5
LU

Dy
+—=v'e;|ds’. (30)
€
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The E field at the same point 7 on S but in region 2
side is given by (28) as

(7 _“‘f[ J"-’P«z Jj)‘i’z_(_
(—o
+

€

(31)

M;)X V,¢2
o;)
V,¢2 ds’
2

because J and M have been removed.

Since the tangent1al component of the E field is contin-
uous across S, or 7ii X E1 =AX E2, we can obtain from (30)
and (31) an integral equation as

f X/;[jwj:(ﬂ2¢2+l"1¢1)+Msxv’(‘i’z“"bl)

¢2 ¢y

62 €

—ov'| 2 lds —dnAx (7). (32)

Similarly, from the continuity of the tangent1a1 compo-
nent of the H field across S, or A X H1 A X HZ, we can
derive another integral equation as

f X[S[jwﬁs(fz¢2+51¢1)_£XV'(¢2+¢1)

o, 0

- pmsV
By

} ds’=4mh x H™(7). (33)

These two integral equations can be numerically solved to
determine J and M by using the method of moments and
vector ba51s functlons with triangular patch modeling [3].
After J and M are determined, the E field inside the
body can be easﬂy computed by using (27).

As a numerical example, the equivalent electric and
magnetic surface currents, J;, and M_, induced by a plane
EM wave on the surface of a dielectric sphere have been
computed based on (32) and (33), and the results are
shown in Figs. 4 and 5. The electrical size of the sphere is
B,a =1, where B, is the free-space propagation constant
and a is the radius of the sphere. The permittivity of the
sphere is €, =4¢, and the permeability is p,=p,. The
plane EM wave is incident upon the sphere from the
direction of 8 =a. The induced electric and magnetic
currents along a circumferential arc on ¢ = 0 are plotted as
functions of ¢ in Figs. 4 and 5. Along the arc, there are
two components of the electric surface current, J,, and
Jy4» and two components of magnetic surface current, M,,
and M,,. The values of J; are shown normalized to the
1nc1dent magnetic field H™ and those of M, are normal-
ized by the incident electric field E",

To verify the accuracy of the numerical results, they are
compared with the exact solutions of Mie series. The
numerical results are indicated by small triangles and the
exact solutions are plotted in solid lines in Figs. 4 and 5. It
is observed that very accurate numerical results can be
obtained using the present method, which is based on
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Fig. 4. Equivalent electric surface currents induced by a plane EM
wave on the surface of a dielectric sphere with B,a =1, €= 4¢,, and
p=pg. The plane EM wave is incident upon the sphere from the
direction of § = # and the surface currents are on a circumferential arc

of $=0.

1
(Mg l/1EIR|
&
M 1/ 1R
— Mie series
A & numerical results
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Fig. 5. Equivalent magnetic surface currents induced by a plane EM

wave on the surface of a dielectric sphere with Bia=1, €=4¢;, and
p=po. The plane EM wave is incident upon the sphere from the
direction of § = 7 and the surface currents are on a circumferential arc
of ¢ =0.

integral equations for the induced equivalent surface cur-
rents.

REFERENCES

[1] R. F. Harrington, Time-Harmonmc Electromagnetic Fields. New
York: McGraw-Hill, 1961, pp. 106-110.

[2] J. A. Stratton, Electromagnetic Theory. New York: McGraw-Hill,
1941, pp. 464-466.

[31 S. M. Rao, D. R. Wilton, and A. W. Glisson, “Electromagnetic
scattering by surfaces of arbitrary shape,” IEEE Trans. Antennas
Propagat., vol. AP-30, pp. 409-418, May 1982,



CHEN: MATHEMATICAL FORMULATION OF THE EQUIVALENCE PRINCIPLE

Kun-Mu Chen (SM’64—-F’76) was born in Taipei,
Taiwan, China, on February 3, 1933. He received
the BSE.E. degree from the National Taiwan
University, Taipei, Taiwan, in 1955, and the M.S.
and Ph.D. degrees in applied physics from Har-
vard University, Cambridge, MA, in 1958 and
1960, respectively.

While at Harvard University, he held the
C. T. Loo and the Gordon McKay Fellowships.
From 1956 to 1957 he was a Teaching Assistant

) at the National Taiwan University, and from
1959 to 1960 he was a Research Assistant and Teaching Fellow at
Harvard University. From 1960 to 1964 he was associated with the
Radiation Laboratory, University of Michigan, Ann Arbor, where he was
engaged in studies of electromagnetic theory and plasma. In 1962, whilé

1581

on leave from the Umver51ty of Michigan, he was a Visiting Professor of
Elecironics at Chao-Tung University, Taiwan. Since 1964 he has been
with Michigan State University, East Lansing, first as Associate Professor
of Electrical Engineering, and since 1967 as Professor -of Electrical
Engineering. From 1968 to 1973 he was the Director of. the Electrical
Engineering program of the Department of Electrical Engineering and
Systems Science. He has published numerous papers on electromagnetic
radiation and scattering, plasmas, and the interaction of electromagnetic
radiation with biological systems.

Dr. Chen is a Fellow of the American Association for the Advance-
ment of Science, a member of U.S. Commissions A, B, and C of the
International Scientific Radio Union, Sigma Xi, Phi-Kappa-Phi, and
Tau-Beta-Pi. He was the recipient of a Distinguished Faculty Award from
Michigan State University in 1976. He is also the recipient of an Achieve-
ment Award in Science and Engincering from the Taiwanese American
Foundation in 1984. :




